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In the light of multidrug resistance (MDR) among pathogenic microbes and cancer cells, membrane transporters have gained
profound clinical significance. Chemotherapeutic failure, by far, has been attributed mainly to the robust and diverse array of
these proteins, which are omnipresent in every stratum of the living world. Candida albicans, one of the major fungal pathogens
affecting immunocompromised patients, also develops MDR during the course of chemotherapy. The pivotal membrane trans-
porters that C. albicans has exploited as one of the strategies to develop MDR belongs to either the ATP binding cassette (ABC)
or the major facilitator superfamily (MFS) class of proteins. The ABC transporter Candida drug resistance 1 protein (Cdr1p) is a
major player among these transporters that enables the pathogen to outplay the battery of antifungals encountered by it. The
promiscuous Cdr1 protein fulfills the quintessential need of a model to study molecular mechanisms of multidrug transporter
regulation and structure-function analyses of asymmetric ABC transporters. In this review, we cover the highlights of two de-
cades of research on Cdr1p that has provided a platform to study its structure-function relationships and regulatory circuitry for
a better understanding of MDR not only in yeast but also in other organisms.

Candida albicans, although a commensal in human beings, can
become a cause of notorious infections in cases where the

immune system is already challenged (1). Patients with AIDS and
those who are undergoing chemotherapeutic modalities are al-
ways at a risk of developing C. albicans infections (1, 2). The ad-
vent of numerous multidrug-resistant clinical isolates of C. albi-
cans has exacerbated the need for novel antifungal agents. The key
mechanisms of antifungal resistance, in particular, azole resis-
tance, include overexpression of multidrug efflux pumps, altera-
tions in the target proteins, and adjustments in membrane sterol
composition (3). The inability to accumulate detrimental concen-
trations of antifungal agents is attributed mainly to the ATP bind-
ing cassette (ABC) and major facilitator superfamily (MFS) classes
of efflux proteins, which are overexpressed in resistant fungal iso-
lates (3). Among the ABC transporters, Cdr1p and Cdr2p are the
ones with the utmost clinical implications (4) and of the two,
Cdr1p is the major determinant of azole resistance (5).

The gene encoding the Cdr1 protein (Cdr1p) was identified as
a genomic DNA fragment from C. albicans that could functionally
complement a Saccharomyces cerevisiae strain with PDR5 dis-
rupted. The resulting transformants displayed hyperresistance to
several drugs (6). Since then, numerous studies carried out with
this PDR5 homologue have made several insightful contributions
to our understanding of the functioning of deviant ABC pump
proteins and the transcriptional networks that govern its overex-
pression.

This review summarizes the important findings on the struc-
ture, function, and regulation of CDR1 and discusses the direction
of future research with multidrug ABC transporters.

THE ABC TRANSPORTOME OF C. ALBICANS

ABC superfamily is considered one of the largest superfamilies of
proteins. These proteins contain at least one nucleotide binding
domain (NBD). The NBD, which is the energy source for these
proteins, further contains highly conserved motifs such as the
Walker A, Walker B, and signature sequences. Most of these pro-
teins also possess the transmembrane domains (TMDs) and are
considered ABC transporter proteins. Prasad and colleagues iden-

tified a total of 28 putative ABC protein family members in C.
albicans, 21 of which contain TMDs (7). A protein with one NBD
and one TMD is considered a half transporter. A full transporter
consists of TMD and NBD in duplicate, which can be present in
forward (TMD-NBD)2 or reverse (NBD-TMD)2 topology. These
proteins are classified into six subfamilies and, according to the
nomenclature adopted by the Human Genome Organization, are
designated ABCB/MDR, ABCC/MRP, ABCD/ALDP, ABCF/
YEF3, ABCE/RLI, and ABCG/PDR (8, 9). Genes belonging to the
ABCB/MDR, ABCC/MRP, ABCD/ALDP, and ABCG/PDR sub-
families encode the transporter proteins, while ABCF/YEF3 and
ABCE/RLI subfamily proteins do not contain TMDs and thus
encode nontransporter ABC proteins (Table 1). A recent update
of Candida Genome Database (CGD) assembly rearranged the
open reading frames (ORFs) and deleted or merged some of the
ORFs. This rearrangement reduced the total number of ABC pro-
teins to 26, and 19 of them are ABC transporter proteins.

Of the six subfamilies of ABC transporters, ABCG/PDR is the
largest, with nine members. Four members of the PDR subfamily
have been characterized. Cdr1p and Cdr2p are involved in drug
transport and phospholipid translocation (6, 10). Cdr3p and
Cdr4p are not drug transporters but do translocate phosphoglyc-
erides between the two monolayers of the lipid bilayer of the
plasma membrane (11, 12). Thus, in C. albicans, only some of the
members of the ABCG/PDR subfamily have been shown to be
involved in clinical drug resistance. The increased expression of
CDR1 and CDR2 in different drug-resistant clinical isolates of C.
albicans is well documented (13). Notably, members of other sub-
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TABLE 1 ABC proteins of C. albicans

Subfamilya ORF Topologyb Size (amino acids) Description/function Published/suggested name Reference

ABCG/PDR orf19.6000 1,501 Full ABC transporter, involved in drug efflux and
lipid translocation

CDR1 6

ABCG/PDR orf19.5958 1,499 Full ABC transporter, involved in drug efflux and
lipid translocation

CDR2 10

ABCG/PDR orf19.1313 1,501 Full ABC transporter, involved in lipid translocation CDR3 11

ABCG/PDR orf19.5079 1,490 Full ABC transporter, involved in lipid translocation CDR4 12

ABCG/PDR orf19.918 1,512 Full ABC transporter, merged with orf19.919 CDR11 CGD

ABCG/PDR orf19.5759 1,495 Full ABC transporter, similar to S. cerevisiae Snq2 SNQ2 CGD

ABCG/PDR orf19.4531 1,274 ABC transporter, similar to S. cerevisiae YOL075C orf19.4531 CGD

ABCG/PDR orf19.459 1,038 ABC transporter, similar to S. cerevisiae Adp1 ADP1 CGD

ABCG/PDR orf19.3120 579 Half ABC transporter, similar to S. cerevisiae
YOL075C

orf19.3120 CGD

ABCB/MDR orf19.1077 750 Half ABC transporter, similar to S. cerevisiae Atm1 ATM1 CGD

ABCB/MDR orf19.2615 685 Half ABC transporter, similar to S. cerevisiae Mdl1 MDL1 CGD

ABCB/MDR orf19.7440 1,323 Full ABC transporter, putative pheromone
transporter

HST6 14

ABCB/MDR orf19.5599 783 Half ABC transporter, similar to S. cerevisiae Mdl1 MDL2 CGD

ABCC/MRP orf19.1783 1,488 Full ABC transporter, similar to S. cerevisiae Yor1 YOR1 73

ABCC/MRP orf19.5100 1,606 Full vacuolar ABC transporter, involved in
phosphatidylcholine import

MLT1 N. K. Khandelwal and
R. Prasad,
unpublished work

ABCC/MRP orf19.6382 1,490 Full ABC transporter, similar to S. cerevisiae Bpt1p BPT1 CGD

ABCC/MRP orf19.6478 1,580 Full ABC transporter, similar to S. cerevisiae Ycf1
transporter

YCF1 CGD

ABCD/ALDP orf19.7500 768 Half ABC transporter, similar to S. cerevisiae Pxa1 PXA1 CGD

ABCD/ALDP orf19.5255 667 Half ABC transporter, similar to S. cerevisiae Pxa2 PXA2 CGD

ABCF/YEF3 orf19.2183 609 ABC nontransporter; mutation confers
hypersensitivity to amphotericin B

KRE30 74

ABCF/YEF3 orf19.4152 1,050 ABC nontransporter CEF3 CGD

ABCF/YEF3 orf19.6060 751 ABC nontransporter protein, similar to S. cerevisiae
Gcn20

GCN20 CGD

ABCF/YEF3 orf19.7332 1,195 ABC nontransporter ELF1 CGD

ABCE/RLI orf19.3034 622 ABC nontransporter, similar to S. cerevisiae RlI1 RLI1 CGD

Other orf19.5029 545 ABC nontransporter, similar to S. cerevisiae
YDR061w

MODF CGD

Other orf19.388 320 ABC nontransporter, similar to S. cerevisiae YFL028c CAF16 CGD

a ABC proteins of C. albicans are classified into subfamilies on the basis of nomenclature adopted by the Human Genome Organization (HUGO).
b Topology signifies the arrangement of the transmembrane and nucleotide binding domains in a forward (TMD-NBD)2 or reverse fashion (NBD-TMD)2.
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family are involved in a variety of functions. For example, Hst6p of
the ABCB/MDR subfamily is an a-factor mating pheromone
transporter (14) and the vacuolar ABC transporter Mlt1 of the
ABCC/MRP subfamily is involved in C. albicans virulence (15).

CLINICALLY RELEVANT Cdr1p IS A MAJOR MULTIDRUG
TRANSPORTER OF C. ALBICANS

The pioneer study that identified Cdr1p as a major player in mul-
tidrug resistance (MDR) and implied its clinical relevance was
carried out by Sanglard and his coworkers. That group used se-
quential isogenic isolates of C. albicans with increasing levels of
fluconazole resistance from AIDS patients. Some of the isolates
showed a remarkable 10-fold increase in the mRNA levels of then
recently cloned multidrug transporter gene CDR1 (6, 13). This
report was closely followed by White’s group’s study, where a set
of 17 sequential isolates recovered from a single HIV-infected pa-
tient who was on fluconazole therapy for 2 years was used. The
levels of fluconazole resistance varied among the sequential iso-
lates, with the 17th isolate having the highest fluconazole MIC.
The CDR1 mRNA was found to be present at constant levels in
isolates 1 to 15, and its level was approximately 5-fold higher in
isolates 16 and 17 (16). Upregulation of CDR genes was also ob-
served in azole-resistant (AR) isolates from a marrow transplan-
tation patient with disseminated candidiasis (17, 18). Investiga-
tion of serial C. albicans isolates from HIV patients undergoing
fluconazole therapy for repeated oropharyngeal candidiasis epi-
sodes also showed overexpression of the CDR1 and CDR2 genes
(19, 20).

As discussed before, the members of both the ABC and MFS
superfamilies contribute to MDR in C. albicans; however, only
CDR1 and CDR2 of the 19 members of the ABC family and MDR1
of a fairly large number of MFS transporters have well-docu-
mented roles in clinical drug resistance (21, 22). A comparative
study to assess the relative expression of the Cdr1 and Cdr2 pro-
teins in a series of AR clinical isolates of C. albicans have revealed
that Cdr1p makes a greater functional contribution than Cdr2p
(23).

All of the aforementioned work and related studies helped re-
veal the importance of Cdr1p in clinical drug resistance, which
necessitated its further characterization.

Cdr1p: ITS INTRICATE ARCHITECTURE AND FUNCTIONING

Cdr1p is a 169.9-kDa protein built on the conventional blueprint
of full ABC transporters with two homologous halves, each made
up of one TMD that is preceded by an NBD. Each TMD is made up
of six transmembrane helices (TMHs). The TMHs are interlinked
by six extracellular loops (ECL1 to -6) and four intracellular loops
(ICL1 to -4) (24) (Fig. 1A). The NBDs have the hallmark �-sheet
subdomain containing the typical Walker A and Walker B motifs
and also an �-helical subdomain that consists of a conserved ABC
signature sequence (21).

THE VARIABLE TMDs ACCOMMODATE AND EXPEL A WIDE
ARRAY OF XENOBIOTICS

The TMHs of fungal ABC transporters that make up the translo-
cation pathway are highly variable in their primary sequences,
unlike the well-conserved subdomains of NBDs. The understand-
ing of drug recognition and transport by such proteins becomes
ever more challenging owing to the promiscuous nature of these
transporters. Cdr1p also follows the footprints of other members

of its superfamily and has an unimaginably vast spectrum of mol-
ecules as its substrates. In order to understand the basis of the
polyspecificity of Cdr1p, exhaustive computational and biochem-
ical analyses have been undertaken by a number of research
groups. Structure-activity relationship (SAR) analyses with Cdr1p
predicted minimum descriptors that could distinguish between
substrates and nonsubstrates of Cdr1p (25) (discussed later).

The absence of well-resolved three-dimensional (3D) crystal
structural data has made it difficult to decipher the arrangement of
TMHs within the drug binding site(s) of the protein. The drug
binding site(s) is actually an ensemble of residues from distinct
helices; hence, predicting the manner in which these residues
project toward the substrate binding site and participate in sub-
strate binding is a challenge. Furthermore, the emerging data on
different ABC transporters suggest that the translocation channel
within these proteins is not just straight passage but instead has
many diversions that are used or sometimes even co-opted by
distinct substrates. This further complicates deciphering of the
structure and functioning of such proteins.

Site-directed mutagenesis is a vital tool that has been exploited
to elucidate the location of a drug binding site(s) within Cdr1p.
While a number of studies have revealed the importance of se-
lected residues of helices in drug transport (26, 27), the most re-
cent and comprehensive study to probe the drug binding site(s)
was by Rawal and coworkers (28). That study involved alanine
scanning mutagenesis of the entire primary structure comprising
12 TMHs. The resultant library of over 250 mutant variant pro-
teins was overexpressed in a heterologous yeast host, and various
biochemical and biophysical parameters were analyzed to gain
insights into drug recognition and transport. The data from this
exhaustive study revealed that within a polyspecific substrate
binding site, there exist multiple overlapping minibinding sites,
which probably accounts for the promiscuous nature of Cdr1p.
The central drug binding cavity was found to be lined with resi-
dues from TMH1, -2, and -11 on one side and TMH4, -5, and -8
on the other. Other helices, like TMH3, TMH6, TMH7, TMH9,
and TMH10, were found to contribute fewer residues to the drug
binding pocket. Notably, there was no direct correlation between
the importance of a residue and its degree of conservation. How-
ever, in general, the critical residues were largely hydrophobic in
nature, which also coincides with the nature of the substrates sub-
ject to efflux by the protein (Fig. 2).

THE CONSERVED NBDs POWER DRUG EFFLUX

The NBDs are an essential feature of ABC transporters. They har-
ness the energy from ATP hydrolysis to power the expulsion of
substrates across the bilayer (21). Apart from being the engine for
these pump proteins, they may also play a role in substrate selec-
tion (29). One hallmark of yeast ABC transporters is that, unlike
their mammalian counterparts, they elicit high basal ATPase ac-
tivity that is not stimulated by the addition of substrates, indicat-
ing that transporters like Cdr1p and Pdr5p are uncoupled ABC
transporters that constantly hydrolyzes ATP to ensure active sub-
strate transport (24, 30, 31). It is believed that, by retaining high
basal ATPase activity, such pumps probably remain in a trans-
port-competent state (29). Although Cdr1p has its typical motifs
(Walker A, Walker B, and ABC signature sequences) arranged in a
fashion similar to that of the other representatives of its superfam-
ily, a closer look at the amino acid sequence reveals the existence of
divergent amino acids at many positions in these otherwise con-
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served motifs. For instance, N-terminal NBD (N-NBD) motifs
have sequence degeneracy in the Walker A (GRPGAGCST) and
Walker B (IQCWDN) motifs (changes are underlined), but the
ABC signature sequence (VSGGERKRVS) remains conserved.
Contrary to the N-NBD, the Walker A (GASGAGKTT) and
Walker B (LLFLD) motifs of the C-terminal NBD (C-NBD) are
conserved, whereas the ABC signature sequence (LNVEQRKRLT)
is degenerated (21) (Fig. 1B). For this selective sequence degener-
acy, there exists one canonical ATP site and one deviant ATP site.
These unique substitutions were thoroughly investigated. The
atypical cysteine of the Walker A motif in N-NBD (C193) has been

shown to be crucial and noninterchangeable with its equiposi-
tional counterpart (K901) in C-NBD (32, 33). A Cdr1p with either
two N-NBDs or two C-NBDs is nonfunctional as well. While
the chimera with two C-NBDs was not expressed properly, the
chimera made up of two N-NBDs failed to localize to the
plasma membrane. It was no great surprise that the variants
were defective in both ATP hydrolysis and substrate efflux.
Interestingly, the variant with two N-NBDs could be rescued to
the plasma membrane when cells expressing the variant were
exposed to drug substrates. It is noteworthy that although the
rescued N-NBD variant was defective in ATP hydrolysis and

FIG 1 (A) Schematic representation of the predicted topology of Cdr1p. There are two TMDs and two NBDs arranged in a reverse topology. Each TMD is made
up of six alpha helices. The TMHs are interlinked by four ICLs and six ECLs. The TMDs are involved in substrate binding, whereas the NBDs are responsible
for ATP hydrolysis, which is essential for powering substrate efflux. (B) NBD catalytic dyad and sequence degeneracy of the residues in NBDs. The two composite
ATP binding sites, viz., a canonical ATP site (in orange) and a deviant ATP site (in black), are made up of contributions from both of the NBDs. The canonical
ATP site is made up of Walker A and B motifs and the Q loop of NBD2 and the signature sequence and D loop of NBD1, whereas the deviant ATP site is made
up of Walker A and B motifs and the Q loop of NBD1 and the signature sequence and D loop of NBD2. The atypical residues in the respective motifs are in bold
and underlined.
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substrate transport, substrate binding per se was not affected.
These observations highlighted the positional significance of
the two NBDs (34).

The sequence degeneracy of N-NBD in fungal ABC trans-
porters led to the assumption that probably only C-NBD is the
main hub of ATP catalysis, which is required for resetting the
TMDs, whereas N-NBD’s role may be architectural, allowing
interaction with the opposing NBD while in its nucleotide-
bound form, or it could play a regulatory role as well, similar to
that of the N-NBD of the human ABC transporter cystic fibro-
sis transmembrane conductance regulator (29). The experi-
ments that followed to investigate the functional relevance of
sequence degeneracy in isolated domains revealed that atypical
C193 of Walker A and W326 of Walker B of N-NBD are in close
proximity in the ATP binding pocket, where the former residue
participates in hydrolysis while the latter impacts the binding
of the nucleotide (35, 36). Interestingly, well-conserved D327,
which is otherwise the catalytic carboxylate in other ABC trans-
porters, appears to have a new role and behaves as a catalytic
base involved in ATP hydrolysis in this transporter (37). Be-

sides the conserved signature sequence residues of N-NBD, the
role of divergent signature sequence residues of C-NBD has
also been assessed. It was no great surprise that the two con-
served signature residues S304 and G306 were found to be im-
portant for ATP catalysis. Interestingly, their equipositional
counterparts in C-NBD, viz., N1002 and E1004, turned out to
be functionally essential too. While an N1002A mutant was
hypersusceptible to all of the drugs tested, with impaired R6G
efflux and ATPase activity, an E1004A mutant showed selective
susceptibility to certain drugs, with marginally reduced R6G
efflux and wild-type ATPase activity (38). These striking obser-
vations provided further instances of an emerging trait of NBD
residues, influencing substrate specificity.

Taking these results together, it could be said that the diver-
gent residues have assumed distinct roles during the course of
evolution and have their own unique importance. One obvious
conclusion that comes out of such atypical substitutions is that
there might be some distinct mechanism operating at the level
of the NBDs that is peculiar to Cdr1p. Further study of Cdr1p

FIG 2 Residues of TMDs, NBDs, ECLs, and ICLs of Cdr1p whose replacement enhances susceptibility to drugs. The data are compiled from several publications
(24, 26–28, 33, 36–38, 43, 45).
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and other fungal ABC transporters could help solve this
enigma.

EXTRACELLULAR LOOPS: THE ADJUSTABLE LIDS

The random mutagenesis of Pdr5 has highlighted the importance
of ECL residues in protein assembly, cell surface localization, and
substrate specificity (39). In one particular study with Cdr1p, cys-
teines from ECL6 were found to be critical for drug resistance
(26). The study by Niimi and coworkers with RC21v3, a surface-
active D-octapeptide inhibitor of Cdr1p, showed that it could che-
mosensitize cells expressing Cdr1p to fluconazole. The spontane-
ously recovered chromosomal suppressors localized within or
close to the ECLs and could alleviate RC21v3 inhibition. Interest-
ingly, most of the suppressor mutations introduced positive
charges. Since RC21v3 is a cationic-substrate-active inhibitor,
there is a possibility that the positive charges introduced as
suppressors might actually repel the peptide. The data sug-
gested that the peptide might interact with the extracellular
surface of Cdr1p, blocking conformational changes and lock-
ing the protein in a closed state. This would result in inacces-
sibility to the substrate binding sites. It is also possible that the
inhibitor can physically block substrate transport by occupying
the egress channel at the surface of the transporter, which the
substrates otherwise enter before being expelled out of the bi-
layer (40). Although it is mere speculation, the emerging con-
sensus regarding the ECLs is that they act like lids/gates and can
alter substrate specificity and transport, a possibility worth ex-
amining in the future.

INTRACELLULAR LOOPS: THE SIGNALING INTERFACES

In contrast to the ECLs, the ICLs are much more conserved in
their primary sequence but are shorter (31). Structure-function
studies with yeast ICLs suggest that these loops actually serve as
transmission interfaces between the TMDs and NBDs (41, 42). A
recent attempt to deduce the roles of intracellular-loop residues
involved the replacement of each of the 85 ICL residues with a
single alanine. The results revealed that close to 18% of the ICL
residues, when replaced with alanine, yielded mutant protein vari-
ants that, upon expression, displayed enhanced drug susceptibility
in host cells. Of the susceptible mutants, most displayed uncou-
pling between ATP hydrolysis and drug transport. Chromosomal
suppressors for two such ICL1 mutants (I574A and S593A) fell
near the Q loop of C-NBD (R935T) and in the Walker A motif
(G190R) of N-NBD, respectively. Instead of directly communicat-
ing with the mutants, the suppressors actually functioned by re-
storing the coupling interfaces and reestablishing essential con-
tacts between the NBD and TMD, which were otherwise distorted
upon the mutation of the two aforementioned ICL1 residues (43).
Another study by the same group identified an ion pair between
K577 of ICL1 and E315 of N-NBD that was critical for proper
folding and localization of the protein (44). That study pointed
toward a new role for NBD/ICL interacting residues in protein
folding/trafficking. Taken together, all of these reports indicate
that the ICL-NBD junctions play crucial roles and are essential for
the protein’s structure and function.

Cdr1p IS A PROMISCUOUS TRANSPORTER

The hallmark of all ABC transporters is their promiscuous nature.
Cdr1p also follows the legacy and has a vast spectrum of structur-
ally unrelated molecules as its substrates (Fig. 3). Determining

how Cdr1p recognizes such a diverse nature of substrates, which
includes xenobiotics, drugs, lipids, etc., remains a challenge. The
worrisome situation of MDR has been demanding a better under-
standing of the basis of the promiscuity of Cdr1p and similar
proteins. SAR analysis has been extensively employed to evaluate
the polyspecificity of such proteins. It has been proposed that
Cdr1p substrates generally possess a high hydrophobicity index.
In addition, molecular branching, high aromaticity, and the pres-
ence of an atom-centered fragment (R-CH-R) are some of the
other features that are essential for the substrates of Cdr1p (25).
Notably, Cdr1p has a large number of aromatic residues in the
binding pocket and has significant clustering of aromatic residues
near the ectodomains. Thus, substrates with high aromaticity
could be involved in stacking interactions with such residues.
Since the binding cavity is predicted to be large (28) and numer-
ous residues are involved in its interactions with the substrates,
it is likely that branching increases the reactive surface area for
substrate molecules, which results in better passage through the
channel.

Cdr1p TRANSPORTS UNCONVENTIONAL MOLECULES

As discussed above, Cdr1p has the ability to extrude a plethora of
structurally unrelated substrates. These include different classes of
antifungals, fluorescent dyes, plant products, herbicides, antican-
cer drugs, and many more (Fig. 3). Apart from these, the protein
also transports physiological substrates like steroids and phospho-
glycerides. Human steroid hormones such as �-estradiol and cor-
ticosteroids are actively expelled by Cdr1p. Interestingly, while

FIG 3 Schematic representation of the promiscuous nature of Cdr1p.
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Cdr1p could manage �-estradiol and corticosterone efflux, it is
unable to recognize and manage the efflux of another closely re-
lated steroid hormone, progesterone. Steroid transport could be
competed by an excess of drug substrates, implying that Cdr1p has
binding sites in common with the drugs (45). Since other ABC
transporters can also transport steroids, it is reasonable to assume
that these hormones could also be physiological substrates for
these transporters (21).

Steroids have definitive implications in Candida infections.
For instance, vulvovaginal candidiasis is a common ailment; an
elevated level of estrogen and high glycogen content in vaginal
secretions during pregnancy predispose women to the disease
(46). Furthermore, 17-�-estradiol could positively influence the
germination of C. albicans (47, 48). Interestingly, it was shown
that the 17-�-estradiol effect was brought about in a dose-depen-
dent, as well as strain-dependent, manner (48). Since the hyphal
form is responsible for tissue invasion, these reports imply that
steroid hormones could act as cues for the virulence of C. albicans.
The steroid signaling pathways are largely unknown in Candida,
though steroid binding proteins exist in C. albicans (49). It was
also observed that brief exposure of Candida cells to steroid hor-
mones results in upregulation of the CDR1 gene (50). In this sce-
nario, it is plausible that there is an as-yet-uncharacterized link
between MDR and the steroid response pathway.

Asymmetric distribution of phospholipids across plasma mem-
brane is quite well known (51). Perturbations in lipid asymmetry
have profound clinical consequences (51, 52). Cdr1p, which
itself prefers to be localized within microdomains enriched
with sphingolipids and ergosterol, is also responsible for the
asymmetric distribution of phosphoglycerides in C. albicans
plasma membranes (53, 54). The floppase activity of Cdr1p has
also been shown with purified and functionally reconstituted
protein (55). Similar to steroid transport, phosphoglyceride
translocation could be outcompeted by certain drugs, which
again not only points to the polyspecificity of the transporter
but also highlights the overlapping binding sites within the
large, flexible drug binding cavity. Together, these findings im-
ply that, during the course of evolution, C. albicans and other
fungi have learned to utilize their available repertoire of transport-
ers to bring about the efflux of xenobiotics, albeit they have their
own set of physiological substrates.

MODULATORS/INHIBITORS OF Cdr1p

Among the different strategies employed to overcome MDR, in-
hibition of the drug extrusion activity of MDR pumps is one prin-
cipal approach. Similar to yeast cells, MDR is an obstacle to effec-
tive chemotherapy in cancer cells, where ABC transporters play an
important role. Many clinically relevant anticancer drugs have
been identified that function as modulators of human ABC trans-
porters (56). Although research on modulators of yeast MDR
pump proteins is still in its infancy, there are certain compounds,
such as enniatins, milbemycins, isonitrile, and unnarmicins, that
have been demonstrated to modulate drug efflux by inhibiting the
fungal multidrug transporters (23). Niimi and coworkers have
identified the D-octapeptide derivative RC21v3 as a potent inhib-
itor of Cdr1p (40). We have shown earlier that a disulfiram drug
(Antabuse) inhibits the oligomycin-sensitive ATPase activity of
Cdr1p (57). In addition, the polyphenol curcumin and the quo-
rum-sensing molecule farnesol act as modulators of Cdr1p (58,
59). Notably, disulfiram, curcumin, and farnesol also potentiate

antifungal activity and thus display synergy with certain antifun-
gals. Recently, it was shown that the peptide mimic of TMH8 of
Cdr1p could act as inhibitor of efflux activity and also synergize
with fluconazole under both in vitro and in vivo conditions (60).
Despite insufficient information, the use of modulators and pep-
tide mimics as inhibitors of efflux pumps represents a promising
strategy for successful antifungal therapy.

REGULATION OF CDR1 TRANSCRIPTION
(i) Transcription factors: the hidden players. Coinciding with
the role of CDR1 as a major multidrug transporter in clinical an-
tifungal resistance, it is a well-regulated gene. The transcription of
CDR1 is controlled by several well-characterized trans factors that
have been shown to interact with a host of cis elements inter-
spersed in its promoter (discussed later). Tac1 is a prominent
transcription regulator of CDR1 and is often associated with gain-
of-function mutations resulting in hyperresistance in clinical
Candida isolates. Genome-wide transcription profiling and its
comparison in matched pairs of AR and azole-susceptible (AS)
clinical isolates revealed the hyperexpression of CDR1, CDR2, and
12 other genes. Interestingly, this effect was diminished in tac1�/�
mutant AR strains. Notably, chromatin immunoprecipitation
(ChIP)-on-chip assays validated the binding of TAC1 to the pro-
moters of CDR1 and CDR2 (61).

Genome-wide location analysis of Upc2, a zinc cluster family
transcription factor that is implicated in sterol biosynthesis, re-
vealed CDR1 as one of its target genes, thus implying its impor-
tance in MDR. As expected, the upc2�/� mutation results in azole
hypersusceptibility. Notably, Upc2 acts as an activator or repres-
sor, depending on its own activation. For example, UPC2 is acti-
vated by lovastatin or hypoxia and CDR1 expression was down-
regulated during lovastatin treatment and upregulated in the
absence of UPC2. Interestingly, hypoxia does not have the same
effect as UPC2 upon CDR1, implying a complex mechanism of
regulation (62).

CAP1, a bZIP transcription factor, came to light as a functional
homologue of YAP1 in S. cerevisiae that confers fluconazole, cy-
cloheximide, and 4-nitroquinoline N-oxide resistance and, upon
overexpression, also governs CDR1 expression (63, 64). Genome-
wide occupancy and expression profiling of CAP1 revealed that it
binds to the promoters of a host of genes involved in the oxidative
stress response and drug resistance, including CDR1, phospho-
lipid transport, etc. Strikingly, not only the transcription factors
that are implicated in drug resistance and are global regulators
control CDR1 expression but those that play roles in cell division
and proliferation also impact its transcription. For instance, the
overexpression of CaNdt80, a functional homolog of meiosis-spe-
cific transcription factor Ndt80, in S. cerevisiae induced the tran-
scription of CDR1, which could be prevented by creating a muta-
tion in its activation domain (65, 66).

Recently, functional analysis of transcription factors was un-
dertaken by employing artificial activation. This involves fusion of
the Gal4 activation domain to the C terminus of the full-length
protein. This strategy has helped in the characterization of the role
of Mrr2 in fluconazole resistance mediated through overexpres-
sion of CDR1 (67).

(ii) Promoter analyses: the governing authority. In silico anal-
ysis revealed that the CDR1 promoter houses a host of regulatory
elements, including, AP-1, yeast AP-1 (YAP-1), heat shock ele-
ments (HSEs), and MDRNF1 (or drug regulatory elements) (68)
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(Fig. 4). Apparently, mutational analysis demonstrated that most
of the regulatory elements are positioned in the proximal pro-
moter region, while the one required for response to miconazole
stress, AP-1, is situated at the distal promoter (68). Since human
steroid hormones induce CDR1 expression, its promoter was ex-
amined for the presence of steroid-responsive elements. The
search resulted in the identification of a steroid-responsive region
(SRR) comprising two distinct cis elements, SRE1 and SRE2, re-
sponsive to progesterone and progesterone and �-estradiol, re-
spectively (49). Transcriptional analysis of Candida cells upon ex-
posure to estrogen show the upregulation of CDR1 and CDR2,
indicating a plausible connection with drug resistance (48). Re-
sponse to estradiol subsequently assisted in the delineation of
basal expression elements and drug-responsive element I (DREI),
which were specific to induction by estradiol. Regulation of CDR1
by a number of unrelated transcription factors and the presence of
many cis regulatory elements in its promoter suggest that molec-
ular networks leading to its activation under a particular condi-
tion dynamically and delicately control the expression of CDR1.
Although both the CDR1 and CDR2 promoters contain DREs, the
basal expression of CDR2 is much lower than that of CDR1, sug-
gesting an intricate regulation pattern for CDR1 (69).

Increased CDR1 transcription and mRNA stability were two
predominant factors implicated in the development of azole resis-
tance in AR isolates in comparison with matched AS isolates (70).
In another study, it was found that poly(A) polymerase homozy-
gosity and hyperadenylation are responsible for the increased sta-
bility of CDR1 mRNA (71). However, the half-life of Cdr1p did
not change between AS and AR isolates, thus ruling out any pos-
sible role for Cdr1 protein stability in drug resistance (70). Re-
cently, the transcriptional regulation of CDR1 by Ncb2, the �
subunit of the NC2 complex, a heterodimeric regulator of tran-
scription, has been reported (72). ChIP-on-chip analysis revealed
that the global regulator Ncb2 could bind to the CDR1 promoter
in both AR and AS isolates; however, the preferential recruitment
of Ncb2 to the TATA box region of CDR1 under activation (AR)
and a shift at the TATA upstream region under repression (AS)
were noticed. That study suggested that the specific enrichment of
Ncb2 in AR isolates leads to transcriptional activation, whereas
higher occupancy and positional rearrangement lead to repres-
sion, of CDR1 (72).

FUTURE DIRECTIONS

To elucidate the mechanistic details of drug recognition and
transport by Cdr1p, exhaustive biochemical studies have been
undertaken by us and a number of other groups. Despite such
valiant efforts, complete understanding of the functioning of
Cdr1p and similar medically important ABC transporters re-
mains elusive, mainly because of the unavailability of 3D struc-
tural data. With the advent of advanced methodologies to de-
termine the structures of membrane proteins, it seems this
drought will end in the near future. The importance of asym-
metry in the NBDs, arrangements of the TMHs within Cdr1p,
substrate promiscuity, and the sequence of events in the cata-
lytic process of the protein could be understood only with an
appropriate blend of biochemistry and structural biology.
Conjointly, high-throughput genome-wide analyses should be
employed to dissect novel proximal and distal factors control-
ling the temporally varying on-off switch for CDR1 expression,
which has crucial implications in azole resistance.

In a nutshell, novel therapeutic agents are the need of the hour
to circumvent the menace of MDR. Such therapeutics should not
be limited to pump inhibitors but should also include molecules
targeting Cdr1p transcription, translation, and plasma membrane
sorting.
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